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Abstract. In this paper we present a thermodynamical analysis of charge transport on 
spatial hierarchical trees with some non-linear and linear barrier height structures. In 
particular, a discussion of the ‘Fibonacci’ tree is given. In an ordered m-ary tree (or 
‘Fibonacci’ tree), the rate of charge transport is generation level dependent, except when 
the barrier height structure is linear (or after a few levels in the ‘Fibonacci’ tree). 

Recently, there has been much interest in natural and artificial systems that possess an 
underlying hierarchical structure. However, the description and understanding of the 
complexity of these systems remains an open problem [I-61. 

Years of study in this field have provided a number of powerful insights into 
this subject. Among the studies, most have been devoted to the anomalous diffusion 
processes in one dimension with a hierarchical potential [l-51, and the spectrum of 
the Schrodinger equation of such systems [6]. A very appealing concept, namely that 
complex systems are often nearly decomposable, was articulated some years ago by 
Simon [7] in his survey of hierarchically organised structures. These hierarchies, which 
range from the structural layout of matter (the clustering of pieces according to the 
strengths of their interactions) to the organisation diagrams represented by phylogenies 
and social organisations, allow for an effective isolation of a given level from both 
the rapid fluctuations of the lower echelons and the quasi-static constraints of the 
higher ones. This leads in turn to dynamical processes which bear the imprint of the 
underlying tree structure and which can also be used for deciding on the complexity 
of the hierarchical system described by such trees. 

As we know, a number of authors have considered diffusive processes on simple 
hierarchical systems. The first model of this type was due to Huberman and Kerszberg 
[8] and consists of a particle performing nearest-neighbour hopping over an ordered 
array of energy barriers in one dimension. This array is assumed to be hierarchical in 
structure and the particle undergoes dynamical motion in one dimension (real space) 
[l-51. Obviously, this model is a simple one for a disordered medium. In order to 
model actual disorder or a more complex medium, in this paper we present a model 
for a disordered medium with a hierarchical structure in geometrical space (real space), 
and at the same time an energy barrier is assumed with some linear or non-linear 
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distribution f ( n ) .  Here n is the level of the generation of the hierarchical structure 
of this geometrical configuration for a disordered medium. In this paper, we discuss 
the charge transport on the hierarchical systems shown in figures 1 and 3. The bonds 
branching from any intersection point denote spatially separated charge-conducting 
pathways which may correspond to dislocation lines, grain boundaries, or any other 
structural imperfections in the solid 191. This is a geometrical configuration of a 
disordered medium. The elementary height of the barrier is E for the first level and 
f ( n ) E  for other levels. Here, we first consider an ordered 2-ary (binary) tree. The 
charge transfer is from the single segment just preceding the top branching point of 
the tree to its base. The transport from the segment just preceding the branching point 
to one of the two available branches is assumed to be an endothermic process. 

n = 0  

n- 1 

n . 2  

Figure 1. (a) A spatial configuration of an ordered 2-ary hierarchical tree extended to 
the third generation level, n = 3. The bold line indicates one of the eight possible charge 
transport pathways from the top of the tree to its base at level three. (b) One type of barrier 
height structure (case I, a hierarchical binary tree) with respect to the spatial configuration 
of (a). The height from n = 0 to n = 1 is ROE, and from n = 1 to n = 2 is R'E.  

Further we assume that the barrier height increases with the same kind of hierar- 
chical structure (see figure l(b)). For example, when the charge transfer is from the top 
(n  = 0) to the second branching point (n = l ) ,  the barrier height is ROE, and to the 
third branching point (n = 2) it is R'E,  and so on. 

For the binary tree with n levels, the total energy increment, E,, and the total 
number of possible configurational arrangements of conducting pathways, W,, are 

E,  = R ~ - - ' E  w, = 2". (1) 

The charge reaching the base of the tree is thermally activated from the ground energy 
level at the top of the tree to its maximal energy, E,, through one of the W, equally 
probable spatial pathways. Since the charges are transferred from a single spatial 
position at the top of the tree to any one of the W,, equivalent positions at its base, 
the entropy gain per unit of charge transport is 

S ,  = K In W,  = nK In 2. (2)  
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Provided that the charge reaching the base leaves the tree and passes into an 
irreversible charge sink, the rate of the charge transport, r ,  is limited by 

r K exp(S*/K)exp(-E*/KT) (3) 

where S' and E* are the entropy and the energy of activation, respectively. In the 
present case, E' = E, and S* = nK ln2. Equation (3) can now be written as 

r x exp(n1n2)exp(-Ea/KT) = exp[(-E,/K)(l/T - l/T,)] (4) 

where 

KT, = Rn-'E/nln2 ( 5 )  

is a temperature. 

to the level of generation, n, as 
Generally, we can assume that the barrier height increases functionally with respect 

For instance, if we choose the barrier structure as a hierarchical binary tree (case I), 
we have the function as equation (1). And if we choose a linear structure (case 11), 
with the barrier height increasing linearly with respect to n, we have f ( n )  = n. And we 
can also choose the barrier height structure as the Fibonacci sequence (case 111) : 

f ( n )  = f n  = frl-1 + fn-2 (7) 

where fo = f l  = 1 and n 2 2. 
Thus, in general, for a binary tree we have 

KT, =f (n)E/n ln2  (8) 

with various structures, f(n)E, of barrier height. In addition, for an ordered m-ary tree, 
we find KT, = f (n)E/nlnm. 

In figure 2 we have plotted the numerical results of K T,/E against n for a binary 
tree. We can see that for case I, when R I 1, the limit value of To is zero, and from 
equation (4) we obtain the rate of charge transport as r -+ 00. In physical terms this 
means the barrier becomes smaller and smaller as the generation level, n, increases; the 
charge transport is easier and easier, and the tree is a conducting one. However, when 
R > 1 we obtain an opposite result: the larger R is, the faster r + 0, i.e. the higher the 
barrier the more difficult the charge transfer, and the tree becomes insulated. 

For the Fibonacci sequence (case 111), equation (7),  the r -+ 0 process is faster 
than the R > 1 process of case I, after only a few generation levels. Finally, we have 
a completely different consequence for the linear structure (case 11). K T,/E takes a 
constant value l/ln2, i.e. an increase in the generation level, U, causes a proportional 
increase in both the energy and the entropy of activation (see equations (1) and (4)). 
At T = T, the rate of charge transport is independent of E,, and in [lo] T, is called a 
glass transition temperature. This effect is the so-called compensation effect [9,10]. 
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Figure 2. The numerical results for K T o / E  against n, the generation level of the binary 
trees with the barrier height structures: (case I) f ( n )  = R”-’, (1) R = 1.1, (2) R = 1.05, 
(3) R = 1.02, (4) R = 1.0, ( 5 )  R = 0.9, (6) R = 0.5; (case 11) f ( n )  = 11, ( 7 ) ;  (case 111) 
f ( n )  = f n  = f i j - ~  + fii-2, (8). 

Figure 3. The ‘Fibonacci’ tree. The tree produced has a population Fn = F,-I  + F , , 4  for 
n t 2 with FO = F1 = 1. At level n there are F,  pathways for the charge transport. 

In figure 3, we show the ‘Fibonacci’ tree, which is an example of a ‘random’ tree, 
i.e. one in which the branching ratio is non-constant, even on a local scale. This 
tree was first discussed in [2] but not for a spatial configuration. In this paper, we 
extend this tree to a spatial configuration (real space) in which charge can transfer 
from one intersection to another. The tree is generated by the following algorithm. At 
the root there is one parent node. The next generation includes the parent and a single 
offspring. From then on, any offspring must wait one generation before it becomes a 
parent; parents, meanwhile, reproduce at every generation. Thus if the tree produced 
has a population F, at the nth generation, then 

for n 2 2 with F, = F ,  = 1. Following the method used before for the binary tree, we 
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have 

for the ‘Fibonacci’ tree. For the same three types of barrier structure, we show the 
results in figure 4. We can see that for case I we have the same conclusions as for 
a binary tree, and different ones for cases I and 111. In case 11, for the several initial 
generation levels To is generation level dependent, and at a generation level, n, less 
than 30, To takes a constant value K T0/E=2.073. In case 111, we have r --f 0, after a 
few generation levels. 

Figure 4. The numerical results for K T o / E  against n, the generation of level of the 
‘Fibonacci’ tree shown in figure 3 with the barrier height structure: case I, f ( n j  = R“-’, (1) 
R = 1 . 1 ,  (2) R = 1.05, (3) R = 1.02, (4) R = 1.0, ( 5 )  R = 0.5; case 11, f ( n )  = n, (6); case 111, 
f ( n )  = f n  = frl-1 + f n - 2 ,  ( 7 ) .  

In conclusion, in this paper we first modelled a disordered medium as the n-ary tree 
and the ‘Fibonacci’ tree with hierarchical structure in real space. Second, we assumed 
that the barrier heights had a non-linear and linear structure. We assumed two non- 
linear structures: a barrier height with the same kind of hierarchical structure as in real 
space (case 11) and a barrier height with the Fibonacci sequence (case III), and one 
linear structure: a barrier height increasing linearly with respect to n, f ( n )  = n (case I). 
A thermodynamical analysis of the charge transport on these spatial hierarchical trees 
was presented. In particular, a discussion of the ‘Fibonacci’ tree was presented. In an 
ordered m-ary tree (or ‘Fibonacci’ tree), the rate of charge transport is generation level, 
n, dependent except when the barrier height structure is linear (or after a few levels in 
the ‘Fibonacci’ tree). 

Although our models are not directly relevant for any particular experimental 
system, we believe they might be used to describe a disordered medium in some cases, 
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since most of the materials encountered in nature in everyday experience are non- 
crystalline disordered materials. Some typical examples [l] are the problems of the 
transport properties in fractured and in porous rock, the anomalous density of states 
in randomly diluted magnetic systems, silica aerogels and glassy ionic conductors, the 
anomalous relaxation phenomena in spin glasses and macromolecules, the conductivity 
of super-ionic conductors such as hollandite and of percolation clusters of Pb on 
thin films of Ge or Au, and the diffusion-controlled fusion of excitations in porous 
membrane films, polymeric glasses and isotropic mixed crystals. The charge-conducting 
pathways used in this paper may correspond to the dislocation lines, grain boundaries, 
or any other structural imperfections in such a disordered medium. The classical 
theories of transport valid for crystals do not apply, and the physics of transport, and 
in particular of diffusion, is anomalous in these disordered systems. 

The assumptions for the barrier height made in this paper are made for simplicity. 
For instance, the Fibonacci sequence is an example of non-linear barrier height struc- 
ture. On the other hand, the barrier height structure, f (n ) ,  could be of some other 
type; for instance, a probability distribution. 
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